FINAL Review

Final Exam:
 Tuesday, December 7, 8:00-10:00 am, 312
 Lincoln Hall

On OWL
ChemWorks Review Topics
Mastery Review Topics
On Website:
Harris Review Topics
Zumdahl Review Topics
Equation Sheet for Final

FINAL Review

KNOWN TOPICS

Isotopes

Lewis Structures
Balancing Redox Reaction by Half-Reaction Method
Titrations
Nomenclature
Formulas / \% Composition / Molar Mass
Stoichiometry Calculations
Colligative Properties
Buffers
Basics of a Systematic Treatment

Z Ch 1, 2 (Atoms, Molecules, Ions / Nomenclature)

Atomic Theory

conservation of mass
law of definite / multiple proportions
Avogadro's Hypothesis
Building Blocks of the Atom
electrons
protons
neutrons
isotopes

Periodic Table (periods / groups)
metals / nonmetals / metalloids
main group
alkali / alkaline earth metals
chalcogens / halogens
inert (noble) gases
transition elements
lanthanides / actinides
Nomenclature
elements
monatomic / polyatomic / positive / negative ions
compounds (including acids)
ordering elements in binary compounds

Z Ch 3 (Stoichiometry)

```
Relative Atomic Masses
    isotopes
    mole
    molar mass: atoms <-> moles <-> mass
Formulas
% composition
mass data
chemical analysis
```

Chemical Equations
balancing
stoichiometry
mass <-> moles <-> molarity or volume limiting reagent yields
theoretical actual
\%

Z Ch 4 (Chemical Reactions)

Types of Chemical Reactions
dissolution
precipitation
acid / base
oxidation /reduction
Working with Solutions
dissociation / ionization
electrolytes / polarity
composition
mass \% / mole fraction
molarity / molality
mixing or diluting
density: mass <-> volume

Precipitation Reactions
solubility table
balanced / total / net ionic reactions
Strong Acid/Base Reactions (Arrhenius)
acid + base -> salt + water (neutralization)
reactions with metal /nonmetal oxides
reactions with carbonates / sulfites / $\mathrm{NH}_{4}{ }^{+}$cmpds acid / base anhydrides
Redox Reactions
oxidation numbers
moles of electrons transferred
balance via half-reaction method (in acid or base)
Titrations - acid / base, redox

Z Ch 13 (Bonding, Lewis, VSEPR)

omit 13.5-13.8, hyperconjugation

Lewis Structures (obtain the "best" structure) resonance
formal charge
valence shell expansion
Valence Shell Electron Pair Repulsion (VSEPR) electronic geometry molecular geometry (shape) repulsions: BP/BP < BP/LP < LP/LP
Molecular Polarity polar bond bond dipoles molecular dipoles

Z Ch (Gases, Kinetic Theory, Real Gases)

omit 5.12

How Barometer Works

Gas Laws (don't memorize - ABC)
combine with $P V=n R T$
absolute zero
density and molar mass
$P_{\text {tot }}=P_{\mathrm{A}}+P_{\mathrm{B}}+\ldots$ (Dalton)
$P_{\mathrm{A}}=\chi_{\mathrm{A}} \mathrm{P}_{\mathrm{tot}}$
stoichiometry
Real Gases
attractive forces
repulsive forces
van der Waals (predicts phase transition) compare ideal / real / van der Waals

Kinetic Theory

$P V=n R T=1 / 3 N m\left\langle u^{2}\right\rangle$
kinetic energy / mol only depends upon T
$u_{\text {rms }}=\sqrt{ }(3 R T / M)$ (work with)
Maxwell Boltzmann
effect of mass
effect of temperature
Graham's law of effusion
collisions (work with equations)
with wall: $Z_{w}=(N / V) A\left(11_{4}\langle u\rangle\right)$
intermolecular: $Z=(N / V) \pi d^{2} \sqrt{ }(2)\langle u\rangle$ mean free path: $I=1 / \sqrt{ }(2)(N / V) \pi d^{2}$

Z Ch 16 (Forces/Phases); Petrucci

Intramolecular Forces (bonding)
ion / ion
covalent
metallic
Intermolecular Forces (nonbonding)
ion / ion
ion / dipole (H bond, strong)
dipole / dipole
ion / induced dipole
induced dipole / induced dipole

Phase Transitions (normal => 1 atm) melting
boiling
subliming
Phase Diagram (P versus T)
s / /, s / g, / / g equilibrium coexistence line ("Y") triple point critical point

Z Ch 17 (Solutions/Colligative Properties)

Solution Composition
mass percent
mole fraction
molarity
molality
using density

Colligative Properties
vapor pressure lowering - Raoult's law (for solvent)
Henry's law (for solute)
boiling point elevation
freezing point depression
osmotic pressure
electrolytes and van't Hoff "i" factor

Z Ch 6 (Chemical Equilibrium)

Equilibrium Constant

law of mass action activity/activity coefficient
K (molarity)
K_{P} (partial pressures)
reaction quotient, Q mathematics multiply reaction by n reverse reaction add reactions subtract reactions

Solving Equilibrium Problems
homogeneous/heterogeneous reactions approximations
using quadratic formula
Le Châtelier's Principle, change of temperature
total pressure
volume
concentrations/partial pressures

Z Ch 7.1-7.4, 7.6 (Strong Acids and Bases)

Brønsted Lowry

definition of acid/base
conjugate acid/conjugate base autoionization
know 7 common strong acids
these concepts used in most
acid / base problems
know soluble strong bases
strength of acids/bases
pH scale
depends upon water autoionization
temperature dependence
meaning of neutrality, acidity, basicity

H Ch 8.4, 9 (Systematic/ Monoprotic Acid-Base)

systematic treatment of equilibrium
mass balance
charge balance
why and when needed
for strong acids/bases
for weak acids/bases $\left[K=x^{2} /(F-x)\right]$
acidity/basicity of salt solutions
strong acids/bases
conjugates
meaning of neutrality, acidity, basicity
buffers
what are they
identify them
quantitative response to added $\mathrm{H}^{+}, \mathrm{OH}^{-}$
preparation
moles of acid or base and its conjugate
molarities of acid or base and conjugate
strong acid + weak base
strong base + weak acid
Henderson-Hasselbalch
setting up and using an ICE table

H Ch 10 (Polyprotic Acid-Base Equilibria)

 omit 10.6polyprotic acids and bases
write acid reactions
identify amphoteric species
intermediate form
how to determine pH from
$\mathrm{pH}=1 / 2\left(\mathrm{pK}_{\mathrm{a} 1}+\mathrm{pK}_{\mathrm{a} 2}\right)$
principal species

buffers
fractional composition and plots

H Ch 11 (Titrations)

omit 11-5 - 11-8, 11-10

titrations
strong acid/strong base
weak acid/strong base
weak base/strong acid
polyprotics
$\mathrm{pH}=1 / 2\left(\mathrm{pK}_{\mathrm{a} 1}+\mathrm{pK}_{\mathrm{a} 2}\right)$
principal species
buffers
levelling effect

